Exchange Graphs of Maximal Weakly Separated Collections

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber

PRIMES Conference, May 16th, 2015

Weakly Separated Sets in [n]

$$
[n]=\{1,2 \ldots, n\}
$$

Definition

Two subsets $A, B \subset[n]$ of the same cardinality are called weakly separated if $A \backslash B$ and $B \backslash A$ can be separated by a chord in the circle.

Example: $\{1,5,6,7\}$ and $\{2,3,4,7\}$

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber
Exchange Graphs of Maximal Weakly Separated Collections

Weakly Separated Collections: The Simplest Case Triangulations

$\binom{[n]}{k}=$ set of k-element subsets of $[n]$
Basic idea: A collection $S \subset\binom{[n]}{k}$ is called weakly separated if the subsets in S are pairwise weakly separated. Simplest case: $k=2$ Example: $n=6$

$\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,6\},\{1,6\}$ are in all triangulations.
Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber
Exchange Graphs of Maximal Weakly Separated Collections

Grassmann Necklace and Positroids

Definition (Oh, Speyer, Postnikov)

A connected Grassmann Necklace \mathcal{I} is a collection of distinct sets $I_{1}, I_{2}, \ldots I_{n} \in\binom{[n]}{k}$ such that $I_{i+1} \supset I_{i} \backslash i$ where indices are considered modulo n.

Example: Hexagon
$\mathcal{I}=\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,6\},\{1,6\}$.

Definition

The positroid $\mathcal{M}_{\mathcal{I}}$ is a subset of $\binom{[n]}{k}$ that is a function of the Grassmann necklace \mathcal{I}.

Example: Hexagon

$$
\mathcal{M}_{\mathcal{I}}=\binom{[6]}{2}
$$

Maximal Weakly Separated Collections

Definition

A weakly separated collection S is said to have Grassmann Necklace \mathcal{I} if $\mathcal{S} \subset \mathcal{M}_{\mathcal{I}} \subset\binom{[n]}{k} . S$ is said to be maximal if it is not contained in another weakly separated collection with the same Grassmann necklace.

Theorem (Oh, Postnikov, Speyer)
The cardinality of a maximal weakly separated collection with Grassmann Necklace \mathcal{I} is a fixed number that is a function of the Grassmann Necklace.

For triangulations, the cardinality is $2 n-3$.

Mutations in the Case of Triangulations

In the case of a triangulation, a mutation corresponds to a diagonal flip.
$\{\{a, b\},\{b, c\},\{c, d\},\{a, d\},\{a, c\}\}$ mutates to $\{\{a, b\},\{b, c\},\{c, d\},\{a, d\},\{b, d\}\}$.

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber
Exchange Graphs of Maximal Weakly Separated Collections

Mutations

Definition (Oh, Postnikov, Speyer)

Let $\mathcal{F} \subset\binom{[n]}{k}$ be a maximal weakly separated collection with Grassmann Necklace \mathcal{I}. For a $k-2$ element subset H of $[n$], suppose there exist k-element subsets
$H \cup\{a, b\}, H \cup\{b, c\}, H \cup\{c, d\}, H \cup\{a, d\}, H \cup\{a, c\} \in F$.
Then we can obtain the maximal weakly separated collection $\mathcal{F}^{\prime}=(\mathcal{F} \backslash\{H \cup\{a, c\}\}) \cup\{H \cup\{b, d\}\}$ through a mutation.

Example:

$$
\begin{aligned}
& \mathcal{I}=\{\{1,2,3\},\{2,3,4\},\{3,4,5\},\{1,4,5\},\{1,2,5\}\} . \\
& \{\{2,3,4\},\{3,4,5\},\{1,2,3\},\{1,3,4\},\{1,4,5\},\{1,2,5\},\{1,3,5\}\} \\
& \{\{2,3,4\},\{3,4,5\},\{1,2,3\},\{1,3,4\},\{1,4,5\},\{1,2,5\},\{1,2,4\}\}
\end{aligned}
$$

Exchange Graphs

Definition

Let \mathcal{I} be a Grassmann necklace. The exchange graph $\mathcal{G}^{\mathcal{I}}$ is defined as follows: the vertices are all of the maximal weakly separated collections with Grassmann Necklace \mathcal{I} and V_{1} and V_{2} form an edge if V_{1} can be mutated into V_{2}.

Example: Hexagon

$$
\text { Let } \mathcal{I}=\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,6\},\{1,6\} .
$$

Known Result about Exchange Graphs

Theorem (Oh, Postnikov, Speyer)
The exchange graph is connected.

Cycles

Theorem

If an exchange graph $\mathcal{G}^{\mathcal{I}}$ is a single cycle, then it must have length $1,2,4$, or 5 . We can construct exchange graphs for all of these lengths.

Example: Pentagon

Trees

Theorem

If an exchange graph $\mathcal{G}^{\mathcal{I}}$ is a tree, then it must be a path. For any $k \geq 0$, there exists an exchange graph $\mathcal{G}^{\mathcal{I}}$ that is a path of length k.

Example: Quadrilateral

C-Constant Graphs: Certain Subgraphs of The Exchange Graph

C-constant graphs are a generalization of exchange graphs. Example:

Definition

Given a weakly separated collection $C \subset \mathcal{M}_{\mathcal{I}}$ such that $\mathcal{I} \subset \mathcal{C}$, we define the \mathbf{C}-constant graph $\mathcal{G}^{\mathcal{I}}(C)$ to be the vertex-induced subgraph of $\mathcal{G}^{\mathcal{I}}$ generated by all maximal weakly separated collections containing C.

Known Result about C-Constant Graphs

Theorem (Oh, Speyer)
The C-constant graph is connected.

Connection between C-Constant Graphs and Exchange Graphs

We found a nice isomorphism that links the C-constant graphs with the exchange graphs, thus showing that the C-constant graphs are not actually more general:

Theorem

For any $c \geq 0$, the set of possible C-constant graphs of co-dimension c is isomorphic to the set of the possible exchange graphs $\mathcal{G}^{\mathcal{I}}$ with interior size c (for $S \in \mathcal{G}^{\mathcal{I}},|S|-|I|=c$.)

Construction of Certain C-Constant Graphs: Cartesian Product

We found a nice way to construct certain "bigger" exchange graphs of higher co-dimension from "smaller exchange graphs of lower co-dimension:

Theorem

For $\mathcal{G}^{\mathcal{I}}(C)$ with co-dimension c and $\mathcal{G}^{\mathcal{J}}(D)$ with co-dimension d, there exists an E-constant graph with co-dimension $c+d$ isomorphic to the Cartesian product $\mathcal{G}^{\mathcal{I}}(C) \square \mathcal{G}^{\mathcal{J}}(D)$.

Characterization of Possible Orders of C-Constant Graphs of Low Co-Dimension

Oh and Speyer characterized the possible orders of C-Constant graphs of co-dimensions 0 and 1 . We extended this result to co-dimension 2,3, and 4.
Maximum orders of C-Constant Graphs of a fixed co-dimension c :
$c=0: 1$
$c=1: 2$
$c=2: 5$
$c=3: 14$
$c=4: 42$

Catalan Conjecture

Observation

Let $M(c)$ be the maximum possible order of C-constant graph of co-dimension c. For any $c \geq 0$, a lower bound on $M(c)$ is $c+1$ 'th Catalan number.

Construction: Exchange graph of a $c+3$-gon (Interior size $=c$)

Interior Size $=3,|\mathcal{G}(C)|=14$.

Conjecture

For any $c \geq 0, M(c)=C_{c+1}$. We've proven this for $c \leq 4$.
Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber
Exchange Graphs of Maximal Weakly Separated Collections

Future Work

For a fixed co-dimension c, determine the possible sizes of $\mathcal{G}^{\mathcal{I}}(C)$ in terms of c.
Try to prove the Catalan Conjecture.
Try to build C-constant graphs with co-dimension c from C-constant graphs with smaller co-dimension.
Continue to work on characterizing associated decorated permutations for various classes of exchange graphs.

Thank You

Thanks to:
My mentor Miriam Farber
Professor Postnikov for suggesting the project
My parents and the MIT PRIMES Program.

