Exchange Graphs of Maximal Weakly Separated Collections

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber

PRIMES Conference, May 16th, 2015

∃ >

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber

Weakly Separated Sets in [n]

$$[n] = \{1, 2..., n\}$$

Definition

Two subsets $A, B \subset [n]$ of the same cardinality are called **weakly separated** if $A \setminus B$ and $B \setminus A$ can be separated by a chord in the circle.

Example: $\{1, 5, 6, 7\}$ and $\{2, 3, 4, 7\}$

ロト (日) (王) (日)

э

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber

Weakly Separated Collections: The Simplest Case -Triangulations

 $\binom{[n]}{k}$ = set of *k*-element subsets of [n]Basic idea: A collection $S \subset \binom{[n]}{k}$ is called **weakly separated** if the subsets in *S* are pairwise weakly separated. Simplest case: k = 2Example: n = 6

 $\{1,2\},\{2,3\},\{3,4\},\{4,5\},\{5,6\},\{1,6\}$ are in all triangulations.

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber

Grassmann Necklace and Positroids

Definition (Oh, Speyer, Postnikov)

A connected **Grassmann Necklace** \mathcal{I} is a collection of distinct sets $I_1, I_2, ..., I_n \in {[n] \choose k}$ such that $I_{i+1} \supset I_i \setminus i$ where indices are considered modulo n.

 $\begin{array}{l} {\sf Example:} \ {\sf Hexagon} \\ {\cal I} = \left\{ {1,2} \right\}, \left\{ {2,3} \right\}, \left\{ {3,4} \right\}, \left\{ {4,5} \right\}, \left\{ {5,6} \right\}, \left\{ {1,6} \right\}. \end{array}$

Definition

The **positroid** $\mathcal{M}_{\mathcal{I}}$ is a subset of $\binom{[n]}{k}$ that is a function of the Grassmann necklace \mathcal{I} .

3

Example: Hexagon $\mathcal{M}_{\mathcal{I}} = {[6] \choose 2}.$

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber

Maximal Weakly Separated Collections

Definition

A weakly separated collection S is said to have Grassmann Necklace \mathcal{I} if $\mathcal{S} \subset \mathcal{M}_{\mathcal{I}} \subset {[n] \choose k}$. S is said to be maximal if it is not contained in another weakly separated collection with the same Grassmann necklace.

Theorem (Oh, Postnikov, Speyer)

The cardinality of a maximal weakly separated collection with Grassmann Necklace \mathcal{I} is a fixed number that is a function of the Grassmann Necklace.

・ロト ・回ト ・ヨト ・ヨト

3

For triangulations, the cardinality is 2n - 3.

Mutations in the Case of Triangulations

In the case of a triangulation, a mutation corresponds to a diagonal flip.

 $\{ \{a, b\}, \{b, c\}, \{c, d\}, \{a, d\}, \{a, c\} \} \text{ mutates to} \\ \{ \{a, b\}, \{b, c\}, \{c, d\}, \{a, d\}, \{b, d\} \} .$

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber Exchange Graphs of Maximal Weakly Separated Collections

Mutations

Definition (Oh, Postnikov, Speyer)

Let $\mathcal{F} \subset {\binom{[n]}{k}}$ be a maximal weakly separated collection with Grassmann Necklace \mathcal{I} . For a k-2 element subset H of [n], suppose there exist k-element subsets $H \cup \{a, b\}, H \cup \{b, c\}, H \cup \{c, d\}, H \cup \{a, d\}, H \cup \{a, c\} \in F$. Then we can obtain the maximal weakly separated collection $\mathcal{F}' = (\mathcal{F} \setminus \{H \cup \{a, c\}\}) \cup \{H \cup \{b, d\}\}$ through a mutation.

Example:

 $\begin{aligned} \mathcal{I} &= \{ \{1,2,3\}, \{2,3,4\}, \{3,4,5\}, \{1,4,5\}, \{1,2,5\} \} \, . \\ &\{ \{2,3,4\}, \{3,4,5\}, \{1,2,3\}, \{1,3,4\}, \{1,4,5\}, \{1,2,5\}, \{1,3,5\} \} \\ &\{ \{2,3,4\}, \{3,4,5\}, \{1,2,3\}, \{1,3,4\}, \{1,4,5\}, \{1,2,5\}, \{1,2,4\} \} \end{aligned}$

Exchange Graphs

Definition

Let \mathcal{I} be a Grassmann necklace. The **exchange graph** $\mathcal{G}^{\mathcal{I}}$ is defined as follows: the vertices are all of the maximal weakly separated collections with Grassmann Necklace \mathcal{I} and V_1 and V_2 form an edge if V_1 can be mutated into V_2 .

 $\begin{array}{l} \mbox{Example: Hexagon} \\ \mbox{Let } \mathcal{I} = \left\{1,2\right\}, \left\{2,3\right\}, \left\{3,4\right\}, \left\{4,5\right\}, \left\{5,6\right\}, \left\{1,6\right\}. \end{array}$

|田・ (注) (注)

3

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber Exchange Graphs of Maximal Weakly Separated Collections

Known Result about Exchange Graphs

Theorem (Oh, Postnikov, Speyer)

The exchange graph is connected.

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber Exchange Graphs of Maximal Weakly Separated Collections A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 > > ㅋ ㅋ >

э

Cycles

Theorem

If an exchange graph $\mathcal{G}^{\mathcal{I}}$ is a single cycle, then it must have length 1, 2, 4, or 5. We can construct exchange graphs for all of these lengths.

Example: Pentagon

- 4 回 ト - 4 回 ト

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber

Trees

Theorem

If an exchange graph $\mathcal{G}^{\mathcal{I}}$ is a tree, then it must be a path. For any $k \geq 0$, there exists an exchange graph $\mathcal{G}^{\mathcal{I}}$ that is a path of length k.

Example: Quadrilateral

Image: A mathematical states and a mathem

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber

C-Constant Graphs: Certain Subgraphs of The Exchange Graph

C-constant graphs are a generalization of exchange graphs. Example:

Definition

Given a weakly separated collection $C \subset M_{\mathcal{I}}$ such that $\mathcal{I} \subset C$, we define the **C-constant graph** $\mathcal{G}^{\mathcal{I}}(C)$ to be the vertex-induced subgraph of $\mathcal{G}^{\mathcal{I}}$ generated by all maximal weakly separated collections containing C.

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber

Known Result about C-Constant Graphs

Theorem (Oh, Speyer)

The C-constant graph is connected.

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber

3

Connection between *C*-Constant Graphs and Exchange Graphs

We found a nice isomorphism that links the *C*-constant graphs with the exchange graphs, thus showing that the *C*-constant graphs are not actually more general:

Theorem

For any $c \ge 0$, the set of possible C-constant graphs of co-dimension c is isomorphic to the set of the possible exchange graphs $\mathcal{G}^{\mathcal{I}}$ with interior size c (for $S \in \mathcal{G}^{\mathcal{I}}$, |S| - |I| = c.)

イロト イポト イヨト イヨト

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber

Construction of Certain C-Constant Graphs: Cartesian Product

We found a nice way to construct certain "bigger" exchange graphs of higher co-dimension from "smaller exchange graphs of lower co-dimension:

Theorem

For $\mathcal{G}^{\mathcal{I}}(C)$ with co-dimension c and $\mathcal{G}^{\mathcal{J}}(D)$ with co-dimension d, there exists an E-constant graph with co-dimension c + d isomorphic to the Cartesian product $\mathcal{G}^{\mathcal{I}}(C) \Box \mathcal{G}^{\mathcal{J}}(D)$.

イロト イポト イヨト イヨト

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber

Characterization of Possible Orders of *C*-Constant Graphs of Low Co-Dimension

Oh and Speyer characterized the possible orders of C-Constant graphs of co-dimensions 0 and 1. We extended this result to co-dimension 2,3, and 4.

Maximum orders of C-Constant Graphs of a fixed co-dimension c:

伺 と く ヨ と く ヨ と

$$c = 0:1$$

$$c = 1:2$$

$$c = 2:5$$

$$c = 3:14$$

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber

Catalan Conjecture

Observation

Let M(c) be the maximum possible order of C-constant graph of co-dimension c. For any $c \ge 0$, a lower bound on M(c) is c + 1'th Catalan number.

Construction: Exchange graph of a c + 3-gon (Interior size = c)

Interior Size = 3, $|\mathcal{G}(C)| = 14$.

Conjecture

For any $c \ge 0$, $M(c) = C_{c+1}$. We've proven this for $c \le 4$.

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber

For a fixed co-dimension c, determine the possible sizes of $\mathcal{G}^{\mathcal{I}}(C)$ in terms of c.

A (1) > A (2) > A

Try to prove the Catalan Conjecture.

Try to build C-constant graphs with co-dimension c from

C-constant graphs with smaller co-dimension.

Continue to work on characterizing associated decorated permutations for various classes of exchange graphs.

Thank You

Thanks to: My mentor Miriam Farber Professor Postnikov for suggesting the project My parents and the MIT PRIMES Program.

▲ @ ▶ < ∃ ▶</p>

э

Meena Jagadeesan, Phillips Exeter Academy Mentor: Miriam Farber Exchange Graphs of Maximal Weakly Separated Collections